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Review
Evolutionary mechanisms in cancer progression give
tumors their individuality. Cancer evolution is different
from organismal evolution, however, and we discuss
where concepts from evolutionary genetics are useful
or limited in facilitating an understanding of cancer.
Based on these concepts we construct and apply the
simplest plausible model of tumor growth and progres-
sion. Simulations using this simple model illustrate the
importance of stochastic events early in tumorigenesis,
highlight the dominance of exponential growth over
linear growth and differentiation, and explain the clonal
substructure of tumors.

Evolution seems so familiar
Everybody knows what evolution is. Right? One hundred
and fifty-six years after the first modern treatment of
evolution [1], and 53 years after discovery of ‘the’ molecular
clock [2], most biologists have an intuitive feel for evolu-
tion. Evolution is a popular subject for science education, it
is taught with passion in college and graduate courses, and
mentioning it in scientific papers is de rigueur even if the
study has nothing to do with evolution. After all, (i) every
single biological process is the product of evolution and,
therefore, (ii) nothing in biology makes sense except in the
light of evolution [3].

Despite its popularity as a subject, however, evolution is
surprisingly difficult to study, and every field that begins to
embrace evolutionary thought and gather evolutionarily-
relevant data is faced with the tension between studying
something so seemingly familiar and producing actually
meaningful and novel insight. This tension is now emerg-
ing in cancer, where technological advances are enabling
the generation of sufficient data to address which general
evolutionary principles apply, and how cancer-specific
mechanisms extend them.

Cancer repeats, the tree of life does not
The most obvious difference between cancer and organis-
mal evolution is that the substrate of the former is a
somatic cell, whereas the latter is a germline process.
Cancer is a dead end whether or not it kills its host,
whereas germline-based organismal evolution forever
marches on. Natural selection over the billions of genera-
tions since the last common ancestor of all life has pro-
duced an enormous range of organisms, but there is only
one tree of life – life on earth is the realization of a single
experiment that will never repeat. By contrast, each type of
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human cancer is an experiment that is repeated over and
over with similar initial conditions among the trials and a
limited range of possible evolutionary trajectories, con-
strained by the specific molecular biology of the originating
cell and by the human genome. A discussion of driver
mutations is presented in Box 1.

Thus, in cancer, evolution really does repeat itself, and
that is its Achilles’ heel: recurrently mutated genes are
used in screening and diagnosis, inform treatment choice,
and are potential targets for drug discovery. It also means
that particular evolutionary principles are likely opera-
tional, some of which are already discernible at this early
stage of our understanding of cancer.

Tumors are clonal
Two lines of evidence from tumor genome-sequencing
studies support the view that all tumor cells (either pri-
mary or metastatic) are derived from a single ancestral cell
that acquired proliferative potential [4]. The first is that
alternate allele frequencies of single nucleotide variants
(SNVs), and the prevalence of larger genomic aberrations
such as aneuploidies, are frequently consistent with all
tumor cells carrying the changes [5,6]. If cells within a
tumor carry several shared somatic changes, then they
must derive from a single ancestral cell that harbored
these changes. This is because the probability of two or
more cells independently acquiring the same set of somatic
mutations is infinitesimally small.

The second, broader line of evidence supporting the
presence of subclones and the clonal origin of metastases
comes from phylogenetic studies of distinct samples in the
same patients [7–11]. In these studies, somatic mutations
serve as unequivocal lineage markers to construct bifur-
cating trees. Branch points represent cell divisions that
gave rise to two proliferating daughter lineages that even-
tually expand into subclones.

Cancer cells are not a mating population and their
genomes do not recombine
Cancer cells arise by mitotic division and therefore do not
exchange genetic material, neither with each other nor
with the cells of the microenvironment. A comparison to
organismal life, which forms the basis for our intuition
about populations, provides an illustrative contrast. Or-
ganismal species, including bacteria, constantly exchange
genetic variation through mating or other mechanisms.
This has the paradoxical effect of maintaining variation
but binding the genomes of all individuals together such
that as a whole the species evolves in concert.

Cancer is entirely different. Once a cancer cell divides,
the two daughter genomes are on a future path of absolute
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Box 1. Identification of driver genes

The limited range of evolutionary trajectories is the basis for the

identification of cancer driver genes, now accomplished by large-

scale sequencing projects that identify recurrently mutated genes. In

many cancers, mutations in a limited number of genes act as the

most common drivers [5,33–38]. Gain-of-function changes in

oncogenes (e.g., ERBB2, KRAS, or IDH1) tend to be caused by a

small set of mutations that recur, but as a class these are rarer than

loss-of-function mutations in tumor-suppressors (e.g., TP53, RB, or

VHL). Because there are very many ways to inactivate a gene (loss-

of-function point mutations, frameshifts, deletions, etc.), searches

for driver mutations have been broadened to the gene level and do

not require the exact same nucleotides to be recurrently mutated

[32,39]. These searches have revealed that many cancers exhibit

mechanistic commonalities, mostly along the lines of tissue of

origin, but some cross those lines as well [40].
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independence (Figure 1A). Without mating and recombi-
nation, mutations that occur in one lineage have no bearing
on another lineage. The variants carried by a cell occurred
in a specific order in its ancestral lineage only, back to the
zygote (Figure 1B). Similarly, the context in which a new
mutation arises is the totality of all previous mutations
across the entire genome that occurred before it
(Figure 1C). As a consequence, some driver mutations will
only provide an advantageous phenotype if the cell previ-
ously acquired another driver that allows the new driver to
have an effect. This explains why mutations in some path-
ways tend to occur early in tumor evolution, and others late
[11–13].

Cell autonomy rules
Driver mutations act cell-autonomously, that is, they con-
fer a growth advantage on the cell in which they arose.
That is how they make themselves more frequent. A non-
cell-autonomously acting mutation confers a growth ad-
vantage on cells that do not harbor it, and therefore cannot
cause an increase of its own frequency in the cancer cell
Drivers
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Figure 1. Passenger mutations serve as lineage markers, and driver mutations lead to

Mutations (star) that arise during DNA replication will be passed on in a heterozygous st

such as incorrectly repaired DNA damage, will likely be passed on to both daughter cell

progeny and are not horizontally transferred. (C) Drivers initiate proliferation and then in

by ever-increasing numbers of mutations. When the ancestor is old, as in slowly-growin

are shared by all cells of the neoplasia is comparatively lower than the number of muta

primary tumor, the subclones (blue and magenta) must grow more quickly to be detec
population. The vast majority of cancer-causing mutations
that have been functionally studied exhibit cell-autono-
mous activity via processes such as intracellular signaling,
cell cycle control, or cell death. Note that mutations that
cause a tumor cell to interact with its microenvironment,
for example via VEGF (vascular endothelial growth factor)
to stimulate vascularization, are considered to be cell-
autonomous because they provide their growth benefit to
the originating cells.

There are some exceptions to the cell-autonomy rule,
however, such as in prostate cancer, where non-cell-auton-
omous signaling by androgens is permissive for tumor
development. Androgen-deprivation therapy can lead to
remission but, eventually, the cancer overcomes its depen-
dence by cell-autonomous mechanisms [14]. Similarly, an-
ti-EGFR (epidermal growth factor receptor) antibody
therapies in colorectal cancer have been shown to be
eventually rendered ineffective by preexisting (cell-auton-
omously acting) KRAS oncogene mutations [15]. In a novel
mouse cancer model, non-cell-autonomous drivers lead to
unstable tumor growth and can result in tumor collapse
[16]. Finally, the accumulation of genomic change that in
some solid tumors culminates in hypermutation and chro-
mothripsis [17,18], as well as the accumulation of driver
mutations in the ancestral lineages of tumor cells, are
difficult to reconcile with non-cell-autonomous mecha-
nisms. These examples illustrate that non-cell-autono-
mous mechanisms exist and play a role in cancer, but it
is cell-autonomy that make cancer the disease of relentless
cell proliferation.

Cell autonomy has profound implications for our under-
standing of the relationship between subclones within a
tumor. Much cancer literature implies or asserts that
clones compete with one another – as if cells within a clone
behave concertedly and ‘gang up’ on all the cells of another
clone (e.g., [19]). Concerted behavior, such as slowing of
growth rates in larger tumors due to reduced nutrient
Lineage evolu�on
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table compared to the already existing and still-expanding original clone (green).
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availability and the accumulation of toxic byproducts, is
likely due to the microenvironment and not due to common
ancestry. Cells of a clone behave independently from one
another due to their cell-autonomy. The growth rates of the
cells in any given clone may be similar because of common
ancestry, and they may be greater than the growth rates of
cells of another clone, but there is no reason to think that
the cells of earlier clones stop growing and dividing merely
because new clones arise.

Mutations do not fix; selection neither sweeps nor
purifies
Clonal mitotic growth, cell-autonomy, and lack of recombi-
nation/mating combine to produce population genetic and
evolutionary effects in cancer that are distinct from, and
simpler than, those in germline evolution. Most importantly,
the somatic variants present in the cancer cell ‘population’
are locked into each individual cell such that allele frequen-
cies are dependent on ‘population size’ (the number of cells in
a tumor). In organismal populations, allele frequency is
generally independent of population size, but, in cancer,
variants can only rise in frequency as a result of clonal
(‘population’) growth, and ‘positive selection’ cannot take
an allele to high frequency without increasing the number
of cells that carry it. Similarly, genetic drift (the stochastic
process that changes the frequency of neutral variants in the
population) is largely irrelevant because neutral variants
(passenger mutations) deterministically change frequency
as a function of the cell growth caused by drivers.

Purifying selection, a useful term in population genetics
describing the loss of an allele because of lower fitness, has
little relevance to cancer growth because cells with a
decreased growth rate trivially end up contributing negli-
gible mass to a tumor. Perhaps cancer therapies can be
thought of as agents of purifying selection, but the regimen
is so different from the usual action of organismal purifying
selection that there is little to be learned by the analogy.
Organismal purifying selection acts to gradually reduce
allele frequencies in a population, whereas the goal in
cancer therapy is to achieve a 100% kill rate and eliminate
the entire population of tumor cells.

The forced application of terms and concepts from organ-
ismal population genetics can distract from the fundamen-
tal simplicity of cancer evolution. For example, calling a
driver an ‘advantageous allele’, or invoking ‘natural selec-
tion’ instead of clonal proliferation, can lead to unnecessary
conceptual complications, such as in the case of discussions
about ‘fixation of advantageous alleles’. Fixation refers to
the rise of a variant in frequency in the population, to 100%.
In cancer, fixation would mean that all cells of a tumor carry
a particular somatic variant, such as a strong driver muta-
tion. Nevertheless, because mutations in cancer generally
work cell-autonomously, sibling cells lacking a new driver
mutation continue replicating, albeit at the original slower
rate. Understanding these dynamics without confounding
concepts from organismal population genetics is key to
understanding the reasons for tumor heterogeneity.

Tumor heterogeneity is clonal (and virtually infinite)
Cancer genome data unequivocally demonstrate that the
bulk of the tumor (excepting stroma and other ‘normal’
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cells) derives from a single ancestral cell, and that there
are not parallel lineages originating from several initially
normal cells that proliferate at a similar rate to give a
heterogeneous mass. Instead, tumor heterogeneity is gen-
erated by occasional, individual tumor cells that acquire
increased proliferative potential and whose greater growth
rate leads to a mass within a mass (see above; Figure 1C).
Among the cells of each clone there is additional genomic
heterogeneity, as evidenced by single cell sequencing
[20–22]. It is due, especially at later stages of tumor growth
when mutator drivers have taken hold, to mutagenic po-
tential in every cell division.

These two types of intratumor heterogeneity (among
clones vs among cells within a clone) are best kept concep-
tually separate. The former embodies the proven prolifer-
ative ability as a result of drivers that caused the clones to
grow, and, although drivers are vastly outnumbered by
passengers, they are guaranteed to be present. In the
latter, the private mutations present in individual cells
of a clone are not enriched for drivers. Among the tremen-
dous number of rare (i.e., not ancestrally shared) variants
present in the billion or more cells that may make up a
growth are mutations that do confer a proliferative advan-
tage. However, overall the variation in an individual cell
that is not shared with most other cells of a clone is highly
enriched for irrelevant genomic changes that do not confer
a proliferative advantage. One practical implication of this
is that sequencing samples of larger numbers of cells may
be preferable in many circumstances because it conve-
niently identifies those mutations that arose in their com-
mon ancestral lineage – which are comparatively enriched
for the drivers that made those cells proliferate.

Heterogeneity is key to understanding the response of a
tumor to drug treatment. Even in the absence of acceler-
ated mutation rates, the genomic diversity present in the
billions of cells of a moderate-sized tumor can harbor
mutations conferring drug resistance, resulting in the high
rates of relapse following chemotherapy typical of many
types of cancer [23].

Models of tumor growth
Many mathematical models of tumor evolution have been
proposed, of varying levels of complexity [24–28]. Our
intent here is to explore the simplest possible model that
gives interpretable results that are consistent with known
dynamics of tumor evolution. Our uncontroversial premise
is that, in all tissues of the adult, homeostatic (non cell-
autonomous) mechanisms keep bulk cell growth in check
such that the number of new cells roughly equals the
number of cells that die. Cancer begins when the nonau-
tonomous mechanisms suppressing cell growth are over-
ruled by cell-autonomous changes (driver mutations) in the
genome of the founding cancer cell.

Given that cells grow by binary division there are two
opposite, extreme scenarios that bound plausible models of
how tumors grow: we refer to these as the strict stem cell
(SSC) model, and the perfectly proliferating cell (PPC)
model. In the SSC model, division of a true stem cell
regenerates a stem cell and one nondividing, differentiated
daughter cell. In this model, one division produces one
additional cell and growth is linear with the number of cell
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Figure 2. Simulations of tumor growth based on a simple model of proliferation.

(A) Stochasticity in the initial phase of tumor growth, illustrated by the number of

tries it takes (y axis) for a clone to grow to 106 cells (as opposed to becoming

extinct), as a function of the strength of the initial driver mutation (x axis). (B)

Results from a simulation exploring the effect of the balance between cell death

and ‘terminal differentiation’ of nondividing cells. Only when drivers are weak (x

axis) is there an appreciable difference in the number of generations it takes to

reach 106 cells.
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divisions. By contrast, the PPC model is perfectly expo-
nential where every daughter cell divides and the number
of cells doubles in each mitotic generation. Both models
have biological underpinnings. Stem cells exist in many
natural systems, and the PPC occurs in cell culture.

Under the SSC, the number of cell divisions required to
produce n cells is n. It would take a million consecutive cell
divisions of one stem cell lineage to generate a 1 mm3

neoplasm. This is impossible within a human lifespan.
More generally, it is linear growth that makes the SSC
or relaxed versions of it implausible. Allowing some limited
proliferative potential of the non-stem daughter cells does
not change the linearity of stem cell models. For example, if
each of the non-stem daughter cells produces 100 progeny,
the number of stem cell divisions would still need to be 106/
102 = 104 for a 1 mm3 neoplasm, or 107 for a 1 cm3 tumor.
Thus, relaxing the SSC does not yield a plausible variant of
the model, fundamentally because it is linear.

At the other extreme, the PPC model implies rapid
tumor growth: a million cells would be generated by a
mere 20 cell divisions. This in itself does not make the
model implausible because the time between divisions
could be very long, but cell death (or terminal differentia-
tion) decreases the growth rate from a perfect doubling per
generation, making the PPC in its extreme form implausi-
ble. However, its essential feature is exponential growth, a
much more plausible dynamic than linear growth.

A simple and interpretable model of proliferation
Cell-autonomy and mitotic division suggest a biologically
straightforward and parsimonious view of tumor cell divi-
sions: tumor cells divide symmetrically to give rise to
daughter cells that are very much like their mother cell,
not in a deterministic but in a probabilistic sense. Daugh-
ter cells inherit their probability of division from their
mother. This probability of division is cell-autonomously
set by the genome and epigenome, and new drivers in-
crease this probability. When homeostatic mechanisms are
in place, an average daughter cell has a 0.5 probability of
dividing again or dying. If instead of dying, the cell lives,
growth is stem-cell-like and linear because only half of the
daughters of a generation will divide again, exactly as in
asymmetric stem cell divisions. At the other end of the
extreme, a daughter that has a 1.0 probability of dividing
again is a PPC because the cell number doubles in every
generation. Let’s call this probability f , for the fraction of
cells in a generation that will go on to divide again. A
similar, slightly more complex model has been shown to
accurately model the progression of known tumor types
[24].

First stochasticity, then determinism
Homeostatic mechanisms initially keep f at 0.5. The first
driver must set f >0.5, meaning that the next cell division
has a somewhat higher probability to give two proliferating
daughters rather than only one. However, the first driver
occurs in a single cell, and there is a chance that this cell
does not divide (equal to 1�f), or, if it divides, that neither
daughter divides [equal to (1�f)2], in which case the driver
is lost. Therefore, the chance that the driver is still around
in the third generation is only f[1�(1�f)2], or, for example,
0.44 if f = 0.55. The consequence is that, if f is close to 0.5, it
takes many independent occurrences for a first driver to
succeed, as some simple simulations show. We explored the
parameter space of f above 0.50 to find the number of tries
it takes to eventually generate a neoplasm of 106 cells, or
roughly 1 mm3 in volume. These simulations show that it
takes 25 tries at f = 0.51 and still almost three tries at
f = 0.6 (Figure 2A). We found that a simple transformation
of the probability of a driver’s survival in a previous model
[24] gives exactly the same results.

The universe of candidate driver mutations is composed
of drivers with a range of effect sizes [29]. Some may tweak f
ever so slightly, some much more. Further, the same driver
mutation may well behave differently in different individu-
als, depending on genetic background. Thus, depending on
genetic background and the effect of candidate driver muta-
tions, cancers with a strong inherited component and some
211



Review Trends in Genetics April 2015, Vol. 31, No. 4
sporadic cancers with strong-effect drivers develop early,
whereas some individuals without predisposition or better
somatic luck will never develop a tumor.

Once a large enough number of cells is produced, the
stochastic process of tumor growth gradually approximates
a deterministic one because there are now sufficient cells to
ensure that the population practically never becomes ex-
tinct. Furthermore, with an average f >>0.5 and a large
number of cells, a tumor is eventually guaranteed.

To be or not to be, it appears to matter not
Now let us consider the path that has generated an incipi-
ent tumor mass of 1 mm3. Intuition suggests that f is not
the only important parameter that determines how many
cell generations it takes to produce the mass, but that it
might also matter whether the nondividing cells live or die.
Thus, the simple model of dividing versus nondividing cells
can be extended to dividing versus dying versus nondivid-
ing cells, such that f + d + l = 1, where d is the probability
that a cell dies and l is the probability that a cell lives but
does not divide. We performed simulations where f again
ranges from 0.5 to 1, under three different values of d: d = 0
(no death, all remain alive), d = l = (1�f)/2 (equal probabil-
ity of dying and living), and d = 1�f (certain death, if
destined to not divide).

The results confound the intuition that the balance
between cell death and terminal differentiation must be
an important parameter (Figure 2B). Only when the prob-
ability of division is close to 0.5 does it matter whether the
nondividing cells live or die, and even then it does not
matter much. At f = 0.51, it takes 400 cell generations to
produce 106 cells if all nondividing cells live and 600 gen-
erations if all of them die. At f = 0.55, it takes 138 and
114 generations, respectively. At f = 0.60, the difference
practically disappears. Why is this? Consecutive cell divi-
sion is an exponential process, and the growth of every
generation progressively and dramatically diminishes the
contribution of the previous generation to total cell num-
ber. The dividing cells are those that matter; the nondivid-
ing cells statistically disappear even if they live – thus,
whether they die makes no difference. The greater the
probability of division, the greater the fraction of dividing
cells in the next generation, and the greater the irrelevance
of the nondividing cells.

Time
So far we have only considered the number of cell genera-
tions required to produce a particular number of cells, not
actual time. That is because real time and generation time
are related linearly, and, given the above discussions, it is
less confusing to only model cell generations than to bring
in the time per generation. Hence – how long in real time
would it take to produce a clone of a particular size, and are
these estimates consistent with what happens in cancer?
We let t, the average time between divisions, range from
two per week to one per month, and calculated the number
of weeks it takes to form a clone of 103, 106, or 109 cells in
the same range of f as before. For simplicity we set
d = l = (1�f)/2; that is, we let the same number of nondi-
viding cells live and die, and started with a single cell as
before.
212
The resulting times are entirely within the range of
plausible values [30]. At the slow end, a clone with
f = 0.55 and t = 4 weeks/division takes 3.2 years to produce
103 cells, or 8.9 years to produce 106 cells. In the middle, a
clone with f = 0.65 and t = 2 weeks/division takes 22 months
to produce 106 cells, or 34 months to produce 109 cells. An
aggressive clone with f = 0.75 and t = 2 divisions/week takes
16 weeks to produce 106 cells, or 25 weeks to produce 109

cells.
In principle, this simple model could also accommodate

the increase in mutation rates many tumors experience
(via genome instability or other mechanisms) at later
stages of progression, or mutator phenotypes. Increasing
mutation rates decrease the wait-time to a driver mutation
appearing somewhere in the clone, whether they are
caused by genetic predisposition (Lynch syndrome), the
environment (carcinogens in lung cancer), or somatic
events in the course of tumor development (mutagenic
drivers such as APOBEC3 – apolipoprotein B mRNA edit-
ing enzyme, catalytic polypeptide-like 3 [31]). In the inter-
est of simplicity, we chose here not to model mutation rates
because their increase only compresses clock time between
drivers and not the fundamental cell biology of drivers
themselves.

Progression (evolution)
Constraints on the cellular machinery and the robustness
of biological networks suggest that the first successful
driver is likely to set f to be only a little above 0.5, as
opposed to immediately increasing the probability of divi-
sion to a high value [24]. Subsequent drivers may continue
to increase f , but a decrease in t would also cause a higher
proliferative rate, and for each subsequent driver to suc-
ceed it must either increase f or decrease t. The cells
carrying these new drivers will only contribute substan-
tially to the tumor mass if the magnitude of the change is
great enough, because the earlier genotype has a head-
start in the number of cells that carry it (Figure 3). Thus,
unless drivers occur in very rapid succession, functional
heterogeneity due to differential presence of drivers (not
only lineage heterogeneity, which involves accumulation of
passengers and happens regardless of drivers; Figure 1B)
is ensured within the tumor (Figure 1C).

That tumor evolution (progression) should follow this
simple scenario, which explains intratumor heterogene-
ity, is entirely consistent with the nature of driver muta-
tions. As comprehensively explored in a recent review on
cancer [30], decades of functional studies as well as
recent genome-sequencing efforts have shown that there
is a limited number, perhaps between two and eight, of
large-effect driver genes in most tumors. There is still
ascertainment bias towards point mutations and very
large chromosomal changes, such as recurrent chromo-
some 1q gain in estrogen receptor (ER)-positive breast
cancers, and the number may therefore be higher once all
genomic changes are reliably identified. There may also be
a large number of small-effect drivers that are sometimes
lucky enough to help generate a clone [32]. However, the
fact that there are unlikely to be many more large-effect
driver changes per cancer is consistent with the idea
that, in any given cell type, there is a limited number of
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Figure 3. Visual representation of evolution and resulting clonal heterogeneity in a

tumor that grows to 3.5 billion cells over the course of three driver mutations that

occur within 4 years. (A) Parameters of the simulation. The grey clone originates

with the first driver mutation that sets f = 0.60, and t = 2 weeks. 100 weeks later the

purple clone originates due to a driver that decreases t to 1 week ( f does not

change). A further 60 weeks later, the orange clone arises by a driver that sets f to

0.75. Abbreviations: div, division; prob, probability. (B) Five time-points in the

evolution of this tumor. Area sizes are proportional to the number of cells in each

clone. After 4 years (208 weeks), all clones are approximately the same size, 109

cells each, constituting a solid tumor of about 3.5 cm3.
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pathways that when mutated confer a big growth advan-
tage. Small-effect drivers may also accumulate, but by
definition they will not contribute the majority of the
tumorigenic phenotype.

Simplicity of basics, complexity of instantiations
Cancer is a dumb disease, a disease of cell number alone
and their uncontrolled growth, a regression to a more
primitive state that overcomes the intricate homeostatic
mechanisms that have evolved in multicellular organisms.
Perhaps it is not surprising that a very simple model with
only two parameters, f and t, can provide an explanatory
basis for its progression. Cancer is also capricious, howev-
er, because mutation is random, and even the process of
clonal growth is governed by stochasticity because each
driver mutation is not guaranteed to be successful in
causing a sufficient number of cell divisions to make a
persisting clone. Synthetic interactions among drivers, or
between drivers and genetic background, add genetic vari-
ance. Microenvironment, its interaction with genetics,
local nutrient supply, and other organismal factors add
further stochasticity. As a consequence, the variation
in cancer incidence, speed of progression, likelihood of
recurrence or metastasis, and eventual outcome is huge.
However, while every tumor is an individual experiment in
evolution’s morbid playground, basic principles apply –
and the finite number of underlying mechanisms gives
hope that an exact 100% kill rate, not rounded up, will
be achieved reliably in the future.
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